CO2 Chiller Field Study - Quick Guide & Feedback Insert

Supporting the CalNEXT CO₂ Chiller Demonstration

Why You're Receiving This

This guide summarizes the most important takeaways from the CO_2 chiller field study and highlights both the strengths of CO_2 systems and the legitimate concerns noted during the project. It also gives you a way to ask questions, share feedback, or request clarification on any topic.

Key Positive Findings

1. Strong Cooling Performance

CO₂ chillers consistently held milk at lower temperatures than synthetic systems.

Benefit to dairies: better product protection, tighter temperature compliance.

Benefit to PRO: demonstrates superior thermal performance of PROGreen systems.

2. Significant Heat Recovery Value

Heat reclaim from CO₂ delivered major savings:

- ~40,000 gallons/year propane reduction (Site-1)
- ~2.6 million ft³/year natural gas reduction potential (Site-2)

Benefit: huge customer fuel savings + large GHG reductions.

3. Environmental & Regulatory Advantage

CO₂ (R-744) has:

- GWP = 1
- No future phase-downs or bans

- No flammability risk
- Lowest lifecycle climate impact of any refrigerant in dairy applications

Benefit: long-term refrigerant security for customers, especially with tightening California rules.

4. Comparable or Better Energy Performance

 CO_2 matched or beat synthetic systems in efficiency at both sites when normalized. Heat recovery pushes the total benefit far ahead of synthetic options.

5. Lower Total Cost of Ownership (when heat recovery is used)

Over a 20-year life, CO_2 systems were ~16% cheaper to own and operate vs synthetic chillers.

Common Questions & Legitimate Concerns

Below are the concerns identified in the field study, each followed by a prompt so readers can share feedback or request clarification.

Concern 1 — High Ambient Temperature Shutdowns

Your feedback:

Concern : The Ambient femperature chataevine
CO_2 systems experienced occasional high-temp alarms prior to retrofits.
How we addressed it:
Adiabatic and water-assist gas cooler retrofits eliminated the outages.

Do you have concerns about high-temperature operations in your region?

☐ Yes ☐ No Comments: _____

Concern 2 — Higher Upfront Cost

CO₂ systems cost more upfront than synthetic chillers.

How we address it:

Fuel savings + refrigerant savings + incentives lead to fast payback (3–5 yrs).

Your feedback:

Is upfront cost a barrier at your facility? What would help?

Concern 3 — Need for Trained Technicians

CO₂ systems operate at higher pressures and require familiarity with transcritical controls.

How PRO addresses it:

- Factory + onsite training
- Remote diagnostics
- Active dealer support
- CO₂ education programs (Refrigeration Mentor, etc.)

Your feedback:

Would additional training or resources help your team?

Concern 4 — Performance in Extreme Heat

Efficiency drops in very hot conditions for basic transcritical systems.

How we address it:

• Gas cooler upgrades

- Ambient-based floating head control
- Optional hybrid/backup configurations

Your feedback:

Do you want more detail on PRO's hot-climate performance strategies?

Concern 5 — System Complexity vs. Synthetic Units

CO₂ systems have more sensors, valves, and controls.

How we address it:

- Improved control logic
- Redundant protections
- Cleaner remote visibility
- Standardized commissioning templates

Your feedback:

What concerns you most about system complexity?

We Want Your Questions

If you'd like help understanding any part of the study, or want to discuss feasibility at your site, please reach out: <u>info@prorefrigeration.com</u>